# 1. Single cycle jitter

Single cycle jitter made on random samples of single periods, is usually specified with its rms value, which is equal to the standard deviation based on single measurements. The Analyzer can then directly measure and display the rms jitter. Jitter can also be expressed as peak-to-peak value, which is also displayed in the Statistics screen.

# 2. Cycle-to-cycle jitter

Cycle-to-cycle jitter demands zero dead-time measurements without gaps and can be made on input signals with a jitter frequency of up to 20 MHz. There is currently no dedicated measurement function, but the raw data of a Period Average measurement, with Sample Interval of 0 or down to 50 ns, could be exported to e.g. Matlab or Excel for “number crunching” and analysis.

# 3. Wander measurements

Wander measurements, which is a “slow jitter” measurement with jitter frequencies <10 Hz is made by using the TIE function, which compares the accumulated period phase drift, with the ideal phase from an ideal clock.

# 4. Deterministic jitter

Deterministic jitter is revealed in the Distribution graph, which will show underlying noise sources in a clear way. For example a sine modulated noise source would give a bathtub shape, a pulse modulated noise source would give a twin peak shape, and a measurement of a source containing not one, but two, fundamental frequencies will be displayed as “double hump”.